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By means of minimal basis SCF calculations for HF, H,0, NH; and CH, different expansions
of Slater orbitals (STO) in terms of Gaussian orbitals (GTO) are tested in order to find an appropriate
compromise between sufficient accuracy of the results and reasonable computing times. The least
squares fit of the GTO expansion to STO does not appear to have any advantages over the expansion
based on a variational procedure. It turns out that for hydrogens an expansion of the 1s orbital in
terms of three GTO is quite sufficient, whereas for first row atoms an expansion of the 1s orbital in
terms of three to five GTO, of the 2s orbital in terms of two GTO and of the 2p orbitals in terms of
three GTO seems to be adequate.

An Hand von SCF-Rechnungen mit minimaler Basis fir die Molekile HF, H,0, NH; und CH,
wurden verschiedene Entwicklungen von Slater-Orbitalen (STO) nach GauB-Orbitalen {(GTO) ge-
testet, um einen geeigneten Kompromif zwischen ausreichender Genaunigkeit der Ergebnisse und ver-
tretbaren Rechenzeiten zu finden. Es zeigt sich, daB die Entwicklung der STO nach GTO mit Hilfe
der Methode der kleinsten Fehlerquadrate keine Vorteile gegeniiber der auf einem Variationsverfahren
basierenden Entwicklung aufweist. Fir H-Atome erweist sich eine Entwicklung des 1s-Orbitals nach
drel GTO als ausreichend, fiir Atome der 1. Periode erscheint eine Entwicklung des 15-Orbitals nach
drei bis fiinf GTO, des 25-Orbitals nach zwei GTO und der 2p-Orbitale nach drei GTO als geeignet.

En vue de frouver un compromis approprié entre la précision et la durée des calculs, différents
développements des orbitales de Slater (STO) en termes d’orbitales gaussiennes (GTO) sont testés
au moyen de calculs SCF en bases minimales pour HF, H,0, NH; et CH,. L’ajustement par les
moindres carrés du développement des STO en GTO ne présente apparemment d’avantages sur le
développement fondé sur un procédé variationnel. Il apparait que pour hydrogéne un développement
de I'orbitale 1s en fonction de trois gaussiennes est largement suffisant, alors que pour les atomes de
la premiére rangée il semble nécessaire de développer 'orbitale 1sen 34 5 GTO, lorbitale 2sen 2 GTO
et les orbitales 2p en 3 GTO.

Introduction

Self-consistent group function (SCGF) calculations based on the separated-
pair approximation have proved of great value in discussing chemical problems,
particularly in the most simple form which is characterized by the use of a minimal
set of basis orbitals [1]. But difficulties in the systematic determination of all
molecular integrals will make the use of Slater-type orbitals (STO) prohibitive
for large molecules of general geometry until considerably more effective pro-
grammes for the evaluation of many-center integrals are developed than those
currently available. During the last few years Gaussian-type orbitals (GTO),
originally introduced into quantum chemical calculations by Boys [2] and
McWeeny [3], have proved successful in molecular calculations (cf. [4, 5]), as
the need to use larger basis sets is more than compensated by the ease with which
molecular integrals over GTO can be calculated.
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The simplicity of minimal basis molecular calculations may be preserved
in spite of the slow convergence of GTO-calculations through the use of a minimal
basis set of contracted Gaussians (contracted GTO), i.e. linear combinations of
Gaussian-type orbitals, as first suggested by Foster and Boys [6], and more recently
by various authors [7]. The simulation of atomic Hartree-Fock-orbitals [8, 9]
and of the double zeta STO basis [10] has been studied in detail, and contracted
GTO bases are being used extensively (cf. [4, 10-127). The present paper gives the
results of Roothaan SCF calculations on the methane and the water molecule
with different minimum basis sets of contracted GTO. These calculations were
undertaken in order to numerically compare two different expansion methods
discussed by Huzinaga [8] and by O-ohata, Taketa, and Huzinaga [13], and
in order to find an appropriate compromise between sufficient accuracy and
reasonable computing time, i.e. in order to determine a set of contracted GTO
suitable for SCF and SCGF calculations [1] on large molecules.

Gaussian Expansion of Slater Orbitals

The GTO 1,,,, used in the present paper are defined as
r’n'lm(clz ~r) = Nn'(C,) rn' - exp(_£/r2) Ylm(67 QD) ’ (1)

where N,,.({'} is an appropriate normalizing factor [8]. The approximate expansion
B um(C, ¥) of an STO ¢,,,,((, r) in terms of K of these GTO is generally expressed as

X
(pnlm(c’ r) = Z Cinn’lm(aa 1") ’ (2)
i=1
where the orbitals on both sides of this equation should have the same angular
dependence, i.e. only # of the same [ and m are included in the contraction given
in (2). The prime is used to distinguish the GTO label »n' and orbital exponent {’
from the corresponding STO quantities. Furthermore, if one sets
(=, €)
the exponent parameters «; are, for a particular expansion, independent of the
value of { [8, 13]. As shown by Huzinaga [8] all s-type STO are best expanded
in terms of Gaussian ls-orbitals (n'= 1), p-type STO are best expanded in terms
of 2p-GTO (n =2} and d-type STO in terms of 3d-GTO (n' = 3). Thus for 1s, 2s
and 2p orbitals (to which we will restrict ourselves with minimal basis calculations
on molecules composed of first row atoms and hydrogen in mind) we have ex-
plicitly

K
¢IS(C5 r) = Z C(iIS)rlls(Cz a$IS)y r) s

K
¢2s(£9 7') = Z CEZS) ’11S(CZ OC(iZS)o r) H (4)

K
@21)(&7 7') = Z chp)l,’Zp(CZ agZp)’ r) >
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Table 1. Coefficients and exponent parameters for Gaussian expansion of Slater orbitals (method 1)

K ai 1s) C& 1s) K 05525) C(i2S)
2 0.2015264 0.82122535 2 0.1059647 1.00725532
1.332467 0.27440872 4171148 —0.04842184
3 0.1513626 0.64762487 3 0.0553757 0.38684504
0.6811910 0.40792769 0.1426136 0.65943056
4.499779 0.07048736 3.780114 —0.05460844
4 0.1219455 0.50108255 X 29 o{2p)
0.4445003 0.47831666 i !
1.961863 0.13798736 2 0.1295680 0.78540458
13.00775 0.01968788 0.5571040 0.32565205
5 0.1013090 0.37602145 3 0.0987360 0.57859970
0.3211440 0.50821418 0.3193200 0.47405684
1.146800 0.20571931 1.348288 0.09204572
5.057960 0.04575350
33.64441 0.00611802
where
2 2 3/.3 2 2
Moy, 1) =[8(( 7)) /m] exp(— o 77) &)
and
cosf
N2 0y, 1) = [128(C% ;) /] r exp(— (2 o;7) { sinf cos .
sinf sin @

Optimum values for the parameters ¢, and «; may be obtained by two different
methods. Method I is based on a variational procedure due to McWeeny [3], and
has been used and described in detail by Huzinaga [8]. In this method the energy
of the GTO expansion for an appropriate Hamiltonian whose eigenfunctions are
the corresponding STO is minimized with respect to the o; and ¢;. As Huzinaga
gives the ¢; only to five decimal figures and as there are some misprints in his
tables some of his values have been recalculated and are given in Table 1.

Method 11 is a least squares fit of the Gaussian expansion to the STO and is
based on a minimization of the integral

e= J [@mm(ls 1) = X Cittyrn( i 117 d7 ©)

with respect to the «; and ¢;. This procedure was suggested by O-ohata, Taketa,
and Huzinaga [13], who gave values of ¢; and o; for K =4, 6, 8 and 10, whereas
Hehre, Stewart, and Pople [14] determined the ¢; and «; for K=3, 4, and 5.
In the present paper we use the values given in Table 1 of Ref. [14].

Method of Computation

LCAO-MO-SCF calculations were performed for HF, H,0, NH; and CH,
with equilibrium ground state geometries as given in Table 2, using different
minimal basis sets of contracted GTO as described in the previous section, i.e.
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Table 2. Cartesian coordinates used for SCF calculations (in bohrs)®

Molecule Atom X y z

HF ' H 1.733120 0.0 0.0

H,0 H, 1.436208 0.0 1.102041
H, —1.436208 0.0 1.102041

NH, H, 1.722045 - 00 —0.721190
H, —0.866023 1.534640 —0.721190
H, —0.866023 —1.534640 —0.721190

CH, H, 1.192517 1.192517 1.192517
H, 1.192517 —1.192517 —1.192517
H, —1.192517 1.192517 —1.192517
H, -1.192517 —1.192517 1.192517

® The heavy atom is at the origin of the coordinate system. 1 bohr = 0.52917 A.

STO were expanded in terms of K =2 to K == 5 Gaussians, by means of the para-
meters of method I as well as those of method I1. The orbital exponents { of the STO
for first row atoms are the optimum values (. = 5.6727, 1.6083, 1.5679; { = 6.6651,
1.9237, 1.9170; {,="7.6579, 2.2458, 2.2266; {r=8.6501, 2.5638, 2.5500 for the 1s,
2s and 2p AO respectively) given by Clementi and Raimondi [157], whereas for
the hydrogen atom {;; = 1.00 was used except in those cases where {;; was optimized
(cf. Table 8 for optimum {4-values).

The programme used for these calculations is based on the POLYATOM
programme system QCPE 47 [16] and is written in FORTRAN IV and MAP
for the IBM 7040/32 K of the computer centre Gottingen. It forms part of a general
programme system MOLCAL for SCF and SCGF calculations on polyatomic
molecules of general geometry, which will shortly be made available through
QCPE. By far the most time-consuming step in these calculations is the evalua-
tion of all molecular integrals which follows the general philosophy of the POLY-
ATOM programme, i.e. first a minimum list of integrals required to be calculated
is set up from specifications of the symmetry properties of the basis orbitals;
the one and two-electron integrals over contracted GTO are then evaluated
as specified by this list, each integral being expanded in terms of integrals over
GTO, eg

Ki K; Kk K;

(@i@j | §r @) = Z Z Z Z C?C&”Cﬂ"c(v”(ﬂkm | ’h’?v)- (7

K A p v

In carrying out this expansion care is taken of the identity
(Al pv) = (kAlv) = (Ax|uv) = (Ak|vp) = (pv|d) = (vuled) = (uv|Ax) = (vp| iK)

in order to reduce the computing time. Although some of the integrals (n,.%,|1,7,)
over GTO are calculated more than once this procedure is considerably faster
than the alternative way which consists in first calculating all integrals over GTO
and then transforming them into integrals over contracted GTO. This is mainly so
because even for small molecules and relatively small expansions of the basis
orbitals the core storage cannot hold all the integrals over GTO. Computer times
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necessary for the evaluation of all integrals over contracted GTO are given to-
gether with the results in Table 5, 6, and 7. The time required for setting up the
minimum list of integrals and for carrying out the SCF calculations is in the order
of 10 sec and 45 sec respectively for all molecules considered in the present paper.

Results and Discussion

Results of SCF calculations with different expansions of minimal sets of basis
orbitals are reported in Tables 5-9. Tables 5—8 give the calculated total ground
state energy E,, the kinetic energy E, and the binding energy D (evaluated as
difference between the molecular energy E, and the energy of the constituent
atoms calculated with the same basis orbitals and listed in Tables 3 and 4), to-
gether with the orbital energics and the gross atomic orbital populations and
overlap populations as defined by Mulliken [17]. Different expansions are denoted
by X(K,,, K, K,,) (e.g. C (5,2, 3)) and H(K,,) respectively, where X is the first
row atom under consideration, H the hydrogen atom, and K, K,; and K,,
are the numbers of GTO in the expansions Eq. (4) of the 1s, 25 and 2p orbitals
respectively. If the number specifying the uncontracted functions are given in round
brackets while the contracted basis set is in square brackets, the given examples
read:

C(5,2,3~C[1s,25,2p] and H(3)—H[1s]. )

Table 3. Total energies (hartrees) of the C, N, O and ¥ atoms obtained by different Gaussian expansions
according to method I and method 11

C(p) N (*5) O(p) F(?P)
Method I Method 11 Method I Method I Method II Method [

X(3,2,3) —37.367697 — —53.906688  —74.046740 — —08.149808
X(3,3,3) —37.392727 —37.227602 —53.944093 —74.099084 —73.797425 —98.361395
X@4,2,2) —37.473047 — — —74.100536 — —
X4,2,3) —37.526822 — — —74.330829 — —
X(5,2,2) —37.509377 — — —74.165918 — —
X(5,2,3 —37.563140 — —54.173624  —74.396161 — —98.734973
X(5,3,3) —37.588674 —37.570919 54211754 —74.449545 —74.409239 —98.806058

Table 4. Total energies (hartrees) of the H (2S) atom obtained by different Gaussian expansions

CH EO
H(3) 1.0000 —0.496980 (—0.494908)*
H(4) 1.0000 —0.499278
H(3) 1.2019 —~0.476722
H(3) 1.2457 ~0.466979
H(3) 1.2462 —0.466856
H(3) 1.2473 —0.466587
H(3) 1.2542 —0.464867

® Value in brackets according to method I, all other values according to method L.
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The data in Tables 5-9 are self-explanatory, thus only a few remarks will be added.
Table 5 gives a comparison of the results for H,O and CH, with an expansion of
the basis orbitals according to method I and method II. From these results it is
secen that method 1 gives invariably lower total energies E, than method TI,
especially so for an expansion of the 1s orbitals in terms of only 3 GTO.

Apparently it is mainly the 1s orbitals which turn out to be worse in method II
than in method I, as may be seen from the orbital energies. Results of the population
analysis arevery similar for the calculations according to both methods, but method I
gives not only lower total energies but also better binding energies D. Thus,
although method I was introduced because it was thought to be much better suited
for molecular calculations than method I [13], it does not seem to have any ad-
vantages. In the following we will therefore concentrate on method I, i.e. on the
expansion of STO in terms of GTO with expansion coefficients and exponent
parameters determined by a variational procedure.

In Table 6 results for H,O for different expansions of the basis orbitals are
collected. As expected the total ground state energy E, becomes lower as the
number of GTO is increased, but it should be noted that increasing K, has
a neglegible effect compared with increasing K, and K,,; thus O (3,3, 3) and
O (4, 2, 3), which both correspond to 15 GTO on the oxygen, give total energies
Eq= —75.2255 and E,= —75.4746 hartrecs respectively. There is no similar
regularity in the calculated binding energies D, the highest values are obtained for
0 (4,2,2)and O (5, 2, 2), the lowest values for O (5, 3, 3) and O (3, 3, 3). According
to the calculated dipole moment and the gross atomic population N(H) of the

Table 6. SCF results of H,O for different expansions of basis orbitals according to method T
(H(3) in all cases)*

0@3,2,3) 04,22 0(4,2,3) 0(,2,2) 0(5,2,3)

Total energy  E, —75.1934 —75.2549 —75.4746 —75.3194 -75.5391
Virial coeff. (Eoc—E.)/E, — 2.0136 — 2.0082 — 2.0086 — 2.0057 - 2.0061
Binding energy D 0.1527 0.1604 0.1499 0.1595 0.1489
Orbital energies 1q, —20.4517 —20.6716 —20.5830 —-20.6993 —20.6105
2a, — 1.2960 - 1.3154 — 1.2973 — 1.3158 — 1.2976
1b, — 0.6407 — 0.6323 — 0.6410 — 0.6324 ~ 0.6412
3a, — 0.4692 — 0.4486 — 04697 — 0.4489 — 0.4499
1b, — 0.4255 — 0.3925 — 04261 - 0.3928 —~ 0.4263
4a, 0.3861 0.3973 0.3852 0.3969 0.3848
2b, 0.5659 0.5790 0.5653 0.5788 0.5651
Populations H 0.8182 0.8718 0.8165 0.8712 0.8159
O(ls) 1.9970 1.9983 1.9981 1.9988 1.9986
0O (2s) 1.8109 1.8453 1.8118 1.8456 1.8121
O (2px) 1.0413 0.9899 1.0426 0.9903 1.0431
O (2py) 2.0 2.0 2.0 2.0 2.0
O (2pz) 1.5144 1.4229 1.5146 1.4228 1.5144
n(OH) 0.5125 0.4443 0.5119 0.4439 0.5115
Dipole moment u 1.67 1.40 1.68 1.40 1.68
Integral evaluation 7.4 min 5.8 min 9 min 6.9 min 10.9 min

* All energies in hartrees, dipole moment in debye.
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hydrogeuns the results may be divided into two groups: for O (4,2, 2) and O (5,2, 2)
u=1.40 D and N(H)=0.87, whereas for all other basis sets ¢t =1.64 D and N(H)
=0.80-0.82. Inspection of the overlap population r(OH) results in a different
grouping: if K,;=K,,, n(OH) is approximately 0.44, whereas for K, <K,
one finds n(OH)=~0.51. The orbital energies do not vary significantly, except
for the energy of the lowest orbital (1a,) which naturally depends on K.

The results for CH,,, which are collected in Table 7, show a very similar be-
haviour, but here C (3,3, 3) and C(5, 3, 3) lead to higher total energies E, than
C(3,2,3) and C(5, 2, 3) respectively. Again, for C (4, 2,2) and C (5, 2, 2) the gross
atomic population N(H)=0.87 is higher than for all other basis sets for which
N(H) =~ 0.84; the highest value of the binding energy D is obtained for C (5, 2, 2),
the lowest value for C (5, 3, 3). In Table 5 a methane calculation with approximate
atomic Hartree-Fock orbitals as given by Huzinaga [8] is included under the
heading C (9,5, 5). It is seen that the results of this calculation are fairly well
reproduced by the GTO expansions, particularly so by C (4,2, 3) and C (5,2, 3),
apart from the fact that the Hartree-Fock orbitals lead to rather low values of the
binding energy and the atomic gross population of the hydrogens. Also shown are
the results of calculations for C (4,2, 3) and C (5, 2, 3) with an expansion of the
hydrogen 1s orbital in terms of 4 GTO. Such an expansion H (4) results in a
considerable increase in computer time for the evaluation of the molecular integrals
but only a very slight improvement of the total energy is achieved and all other
quantities are hardly affected, in comparison with the expansion H (3).

As is well known (i = 1.0 for the orbital exponent of the hydrogen 1s orbital
is not particularly suited for molecular calculations. Optimization of the (-
value leads to an appreciable improvement of the total energy as well as the
binding energy, as can be seen from the data of Table 8. (Binding energies in Table 8
were evaluated as differences between the molecular energies and the energies of
the constituent atoms calculated with free atom orbital exponents, i.e. {=1.0)
This increase in binding energy while going from {; = 1.0 to optimized {;; values is
paralleled by a considerable decrease in the gross atomic population on the hydro-
gens, which leads to an appreciable increase of the calculated dipole moment.
Inspection of the virial coefficient (E, — E,)/E,, particularly for H,O, shows that
the oxygen orbital exponents may not be far from optimum values. Thus the
calculated charge distribution can be expected to be fairly realistic, as is confirmed
by a comparison of the calculated dipole moment p=1.84 and p=1.87 debye
for O(5,2,3) and O (5, 3, 3) respectively with the experimental value = 1.846
debye [18]. But it should be noted that even for optimized {;; values there appear to
be differences in the calculated charge distributions, if different expansions of
the basis orbitals are used, as may be seen e.g. from the methane data for C (4, 2, 2)
and C (4, 2, 3). It remains to be shown whether these differences disappear if the
carbon orbital exponents are also optimized, or whether in fact K,,=2 is not
sufficient in order to give realistic results.

In Table 9 total ground state energies E, for an expansion of the 2s orbital
in terms of two and three GTO (K,,=2 or 3) are given for HF, H,0O, NH, and
CH,. It turns out that K,,=3 leads for HF to E, values lower by an amount
AE =0.06 hartree than K, =2, whereas K, ;=3 gives for CH, a slightly higher
E, than K,,=2, H,0 and NH;, lying inbetween these two cases. Thus in molecules
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Table 9. Comparison of total energies E, for an expansion of the 2s orbital in terms of 2 and 3 GTO,
H (3) in all cases®

E, E, AE E, E, AE
X(3,2,3) X3,3,3) X(523) X(53,3)
HF —98.8543 —98.9133 0.059 —~99.2952 —99.3548 0.060
H,0 —75.1934 —75.2255 0.032 —75.5391 —75.5709 0.032
NH, —55.6357 —55.6462 0.010 —55.8979 —55.9072 0.009
CH, —39.8141 ~39.8124  —0.002 —40.0043 ~40.0009  —0.003

* All energies in hartrees.

Table 10. Total energies (hartrees) for the CH,, NH;, H,O and HF molecules

CH, NH, H,O HF
Present calculations —40.0590 —55.9072 —75.6124 — 99.3548
Min. basis of STO —40.0606* —56.0960° —75.6617°¢ — 99.47861
Extended basis set —40.1983 ¢ —56.2268°¢ —76.0421 & —100.0708"
Experimental —40.526 —56.605 —76.485 - 100.560

@ Klessinger, M., McWeeny, R. [1].

® Duncan, A. B. F.: J. chem. Physics 27, 423 (1957).

¢ Klessinger, M.: Chem. Phys. Letters (1969) (in press).

¢ Ballinger, P. A.: Molecular Physics 2, 139 (1959).

¢ Ritchie, C. D., King, H. F. [5].

! Rajagopal, P.: Z. Naturforsch. 20a, 1557 (1965).

& Moskowitz, J. W., Harrison, M. C.: J. chem. Physics 43, 3550 (1965).
b Cade, P. E., Huo, W. M.: J. chem. Physics 47, 614 (1967).

! from Ref. [4].

with no or only one lone pair of electrons K,, =3 appears to have no advantage
over K,,=2.

Finally, in Table 10 experimental values of the total ground state energies for
CH,, NH;, H,0 and HF are collected together with results of calculations with
minimal basis sets of STO and of previous best calculations. It is seen that the
present results compare rather well with those based on a minimal STO set,
although it should be kept in mind that the aim of the present work was not to
compute absolute energies as accurately as possible, but rather to obtain minimal
basis sets which make it possible to carry out ab initio calculations on sufficiently
large molecules with reasonable computing times.

In conclusion we may summarize our results as follows.

1. The least squares fit of an Gaussian expansion to STO (method II) does
not appear to have any advantage over the Gaussian expansion based on a va-
riational procedure (method I).

2. An expansion of the hydrogen 1s orbital in terms of three GTO seems to be
sufficient in most cases.

3. For the 2p orbitals of first row atoms an expansion in terms of three GTO
is recommended.

4. For the 2s orbital of first row atoms an expansion in terms of two GTO
seems to be sufficient, perhaps with the exception of atoms which have two or more
lone pairs of electrons.
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5. Depending on the desired accuracy for the total energy, an expansion of the
1s orbital of first row atoms in terms of three, four, five or even more GTO can be
used, as the number of GTO in this expansion effects only the total energies and
the energies of the lowest molecular orbitals.

Overall, we may conclude that the expansion of STO in terms of a small number
of GTO is very well suited for minimal basis molecular calculations. X (4,2, 3)
or X (5,2, 3) for first row atoms X represents an appropriate compromise between
sufficient accuracy and reasonable computing time. Here again, the advantage of
X (4,2,3) over X(3,3,3), both corresponding to 15 GTO on atom X, should
be emphasized.

The expansion X (5, 2, 3) together with H (3) has been used in quite a number
of minimum basis SCF and SCGF calculations on larger molecules; results of
these calculations will be presented in forthcoming papers.
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